Учебные материал - сайт для школьников

Пятница, 27.12.2024, 15:09
Приветствую Вас Гость | RSS
Образование
Учебники

ЕГЭ

ГИА

Учебные пособия
Предметы
Азбука

Алгебра

Английский язык

Русский язык

Математика

Литература

Биология

История

Технология

Обществознание

Информатика

География

Химия

Обж

Музыка

Физика

Физическая культура

Изо
ГДЗ
ГДЗ по английскому языку

ГДЗ по русскому языку

ГДЗ по математике

ГДЗ по aлгебре

ГДЗ по геометрии

ГДЗ по информатике

ГДЗ по литературе

ГДЗ по географии

ГДЗ по биологии

ГДЗ по немецкому языку
Бугалтерия
1С Предприятие 7.7

1С Предприятие 8.2

Форма входа
Главная » 2017 » Июнь » 23 » Введение в теорию вероятностей и математическую статистику для физиков
21:14
Введение в теорию вероятностей и математическую статистику для физиков

Введение в теорию вероятностей и математическую статистику для физиков — Теоретический материал иллюстрируется примерами численного решения задач с помощью системы аналитических вычислений Mathematica, освоение которых полезно для студентов и аспирантов, изучающих вероятностные методы в физике. Мы знакомим читателя с применениями критериев Пирсона, Стьюдента, Фишера, Колмогорова и Смирнова для проверки статистических гипотез и определения параметров методом наименьших квадратов. Во второй части курса рассматриваются эргодические свойства случайных процессов, методы моделирования случайных блужданий и броуновского движения, а также численные методы Монте-Карло. В первую очередь здесь излагаются способы получения и преобразования случайных величин и обсуждаются различные критерии качества датчиков псевдослучайных чисел.
Целью курса является объединение теоретических и вычислительных возможностей теории вероятностей в компактной и связанной форме.

Название: Введение в теорию вероятностей и математическую статистику для физиков
Автор: Чеботарев А. М.
Издательство: Московский физико-технический институт
Год: 2008
Страниц: 249
Формат: PDF
Размер: 10,76 МБ
Качество: Отличное

Содержание:

Вероятностные пространства и основные распределения
Аксиоматика Колмогорова
Случайные величины
Вероятностные аспекты квантовой теории
Тест некоммутативности: неравенство Белла
Сходимость случайных величин и предельные теоремы
Закон больших чисел
Пуассоновский предел
Теорема Муавра–Лапласа
Предельные теоремы для экстремальных событий
Теорема Бохнера–Хинчина и центральная предельная теорема
Алгебра характеристических функций
Теорема Бохнера–Хинчина и ее следствия
Центральная предельная теорема
Центральная предельная теорема в форме Ляпунова и Линдеберга
Безгранично делимые и устойчивые законы
Предельные теоремы для распределений с тяжелыми хвостами
Проблема моментов и теорема Бернштейна
Свойство аналитичности характеристических функций
Теорема Бернштейна
Кривые Пирсона
Теорема Бернштейна и распределение Вигнера
Статистическая обработка экспериментальных данных
Задачи математической статистики
Распределение Стьюдента
Интервальные оценки
Статистическая значимость и ошибки первого и второго рода
Гипотеза о средних значениях
Гипотеза о дисперсиях
Гипотеза об однородности
Критерий Пирсона
Теорема Пирсона
Примеры
Гипотеза о независимости выборок
Линейный метод наименьших квадратов
Геометрическое содержание метода наименьших квадратов
Псевдорешения и проекторы
Распределение коэффициентов МНК
Оценка порядка регрессии
Примеры аппроксимации экспериментальных данных
Критерий Колмогорова
Теорема Гливенко–Кантелли
Распределение Колмогорова
?2-критерии Крамера–фон Мизеса и Андерсона–Дарлинга
Фильтрация выбросов
Сравнение мощности критериев
Метод максимального правдоподобия
Функция правдоподобия и ее свойства
Информация Фишера и неравенство Рао–Крамера
Оптимальные статистики
Марковские цепи и случайные блуждания
Марковские цепи
Случайное блуждание
Классификация состояний цепи Маркова
Теорема Перрона–Фробениуса
Скачкообразные и диффузионные процессы
Пуассоновский процесс
Диффузионный предел случайных блужданий
Свойства траекторий винеровского процесса
Метод Монте-Карло и алгоритм Метрополиса
Методы преобразования случайных величин
Стохастический метод решения уравнения Шредингера
Алгоритм Метрополиса в дискретном случае
Марковские цепи и эволюция с непрерывным временем
Алгоритм Хастингса для несимметричных цепей

Скачать Введение в теорию вероятностей и математическую статистику для физиков

Скачать с dfiles.ru
Скачать с turbobit.net
Скачать с bezsms.org
Скачать с file-upload.com
Категория: Журналы,книги | Просмотров: 142 | Добавил: Gunpowder | Теги: математическую, 2008, теорию, Введение, физиков, вероятностей, Чеботарев, для, статистику | Рейтинг: 0.0/0
По классам
1 класс

2 класс

3 класс

4 класс

5 класс

6 класс

7 класс

8 класс

9 класс

10 класс

11 класс
Программы
Система

Драйвера

Безопастность

Интернет

Фотософт

Видеософт

Аудиософт

Офисные

Софт
Разное
Сериалы онлайн

Игры

Фильмы

Музыка

Журналы,книги

Темы для Windows

Обои

Мобила

Аудио и Видео уроки

Разное

Бланки

Photoshop
Поиск по сайту
Новое на сайте
Сегодня материалов нет.
Статистика
Союз образовательных сайтов

Зарег. на сайте

Всего: 24230
Новых за месяц: 0
Новых за неделю: 0
Новых вчера: 0
Новых сегодня: 0

Из них

Администраторов: 4
Модераторов: 1
Проверенных: 4
Обычных юзеров: 24221


Онлайн всего: 49
Гостей: 49
Пользователей: 0
Поиск
© 2024
На ierixon.ru представлены учебники для разных классов, которые Вы можете скачать понравившийся учебник себе на компьютер. Здесь вы найдете последние новинки учебных пособий, а также всегда можете приобрести учебники уже вышедшие в продажу. Все учебники расположенные на сайте представлены абсолютно бесплатно и в ознакомительных целях. Также все пособия в хорошем качестве. Сделать бесплатный сайт с uCoz